If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+12y-10=0
a = 1; b = 12; c = -10;
Δ = b2-4ac
Δ = 122-4·1·(-10)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{46}}{2*1}=\frac{-12-2\sqrt{46}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{46}}{2*1}=\frac{-12+2\sqrt{46}}{2} $
| 2x^2-4x+0=0 | | 7+9y=-29+y | | -2x-5=2x-1 | | 3b+24-4=5 | | 4(2–x)=9 | | –4(2–x)=9 | | 89y+5=1152 | | 89x+5=1152 | | -2x+10+7x=1 | | 2x+3/4x+15=180 | | F(x)=4(x-5)2+7 | | x2+5x=-4 | | -13+4n=31 | | x^2+4x+50-2x^2=0 | | 120°+3x=180° | | (2x+1)(4x–1)=0 | | 6-2x=3x+11 | | t3+t2=95 | | t3+t2+t=95 | | 3x+8=5x2 | | 5x=0+2(5)-10 | | x+5=12+8 | | 0,2x2+3x=1,4x2+1x | | 6•3•x=27 | | 26-(4x11)=5(x+7) | | 12-6x=2/3 | | 3/5x+12=2/3-2 | | -3(x+5=-(3x+15) | | 11x+1=11x-1 | | 113-v=267 | | 9x+1-8=x+1 | | 5(x-1)/4=3(x=1)/2= |